pub fn dag_to_toposorted_adjacency_list<G, Ix: IndexType>(
g: G,
toposort: &[G::NodeId]
) -> (UnweightedList<Ix>, Vec<Ix>)where
G: GraphBase + IntoNeighborsDirected + NodeCompactIndexable + NodeCount,
G::NodeId: IndexType,
Expand description
Creates a representation of the same graph respecting topological order for use in tred::dag_transitive_reduction_closure
.
toposort
must be a topological order on the node indices of g
(for example obtained
from toposort
).
Returns a pair of a graph res
and the reciprocal of the topological sort revmap
.
res
is the same graph as g
with the following differences:
- Node and edge weights are stripped,
- Node indices are replaced by the corresponding rank in
toposort
, - Iterating on the neighbors of a node respects topological order.
revmap
is handy to get back to map indices in g
to indices in res
.
use petgraph::prelude::*;
use petgraph::graph::DefaultIx;
use petgraph::visit::IntoNeighbors;
use petgraph::algo::tred::dag_to_toposorted_adjacency_list;
let mut g = Graph::<&str, (), Directed, DefaultIx>::new();
let second = g.add_node("second child");
let top = g.add_node("top");
let first = g.add_node("first child");
g.extend_with_edges(&[(top, second), (top, first), (first, second)]);
let toposort = vec![top, first, second];
let (res, revmap) = dag_to_toposorted_adjacency_list(&g, &toposort);
// let's compute the children of top in topological order
let children: Vec<NodeIndex> = res
.neighbors(revmap[top.index()])
.map(|ix: NodeIndex| toposort[ix.index()])
.collect();
assert_eq!(children, vec![first, second])
Runtime: O(|V| + |E|).
Space complexity: O(|V| + |E|).