1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
#![cfg(feature = "power-of-two")]
#![doc(hidden)]
use crate::float::{ExtendedFloat80, RawFloat};
use crate::mask::lower_n_halfway;
use crate::number::Number;
use crate::shared;
#[cfg(not(feature = "compact"))]
use lexical_parse_integer::algorithm;
use lexical_util::digit::char_to_valid_digit_const;
use lexical_util::format::NumberFormat;
use lexical_util::iterator::{AsBytes, BytesIter};
use lexical_util::step::u64_step;
#[inline]
pub fn binary<F: RawFloat, const FORMAT: u128>(num: &Number, lossy: bool) -> ExtendedFloat80 {
let format = NumberFormat::<{ FORMAT }> {};
debug_assert!(matches!(format.radix(), 2 | 4 | 8 | 16 | 32));
let fp_zero = ExtendedFloat80 {
mant: 0,
exp: 0,
};
let ctlz = num.mantissa.leading_zeros();
let mantissa = num.mantissa << ctlz;
let power2 = shared::calculate_power2::<F, FORMAT>(num.exponent, ctlz);
if -power2 + 1 >= 64 {
return fp_zero;
}
let shift = shared::calculate_shift::<F>(power2);
let last_bit = 1u64 << shift;
let truncated = last_bit - 1;
let halfway = lower_n_halfway(shift as u64);
let is_even = mantissa & last_bit == 0;
let is_halfway = mantissa & truncated == halfway;
if !lossy && is_even && is_halfway && num.many_digits {
return ExtendedFloat80 {
mant: mantissa,
exp: power2 + shared::INVALID_FP,
};
}
let is_above = mantissa & truncated > halfway;
let round_up = is_above || (!is_even && is_halfway);
let mut fp = ExtendedFloat80 {
mant: mantissa,
exp: power2,
};
shared::round::<F, _>(&mut fp, |f, s| {
shared::round_nearest_tie_even(f, s, |_, _, _| round_up);
});
fp
}
#[inline]
#[allow(unused_mut)]
pub fn parse_u64_digits<'a, Iter, const FORMAT: u128>(
mut iter: Iter,
mantissa: &mut u64,
step: &mut usize,
overflowed: &mut bool,
zero: &mut bool,
) where
Iter: BytesIter<'a>,
{
let format = NumberFormat::<{ FORMAT }> {};
let radix = format.radix() as u64;
#[cfg(not(feature = "compact"))]
if can_try_parse_8digits!(iter, radix) {
let radix2 = radix.wrapping_mul(radix);
let radix4 = radix2.wrapping_mul(radix2);
let radix8 = radix4.wrapping_mul(radix4);
while *step > 8 {
if let Some(v) = algorithm::try_parse_8digits::<u64, _, FORMAT>(&mut iter) {
*mantissa = mantissa.wrapping_mul(radix8).wrapping_add(v);
*step -= 8;
} else {
break;
}
}
}
for &c in iter {
let digit = char_to_valid_digit_const(c, radix as _);
if !*overflowed {
let result = mantissa.checked_mul(radix as _).and_then(|x| x.checked_add(digit as _));
if let Some(mant) = result {
*mantissa = mant;
} else {
*overflowed = true;
*zero &= digit == 0;
}
} else {
*zero &= digit == 0;
}
*step = step.saturating_sub(1);
}
}
#[inline]
pub fn slow_binary<F: RawFloat, const FORMAT: u128>(num: Number) -> ExtendedFloat80 {
let format = NumberFormat::<{ FORMAT }> {};
let radix = format.radix();
debug_assert!(matches!(radix, 2 | 4 | 8 | 16 | 32));
let mut mantissa = 0_u64;
let mut overflow = false;
let mut zero = true;
let mut step = u64_step(radix);
let mut integer = num.integer.bytes::<FORMAT>();
integer.integer_iter().skip_zeros();
parse_u64_digits::<_, FORMAT>(
integer.integer_iter(),
&mut mantissa,
&mut step,
&mut overflow,
&mut zero,
);
if let Some(fraction) = num.fraction {
let mut fraction = fraction.bytes::<FORMAT>();
if mantissa == 0 {
fraction.fraction_iter().skip_zeros();
}
parse_u64_digits::<_, FORMAT>(
fraction.fraction_iter(),
&mut mantissa,
&mut step,
&mut overflow,
&mut zero,
);
}
let ctlz = mantissa.leading_zeros();
mantissa <<= ctlz;
let power2 = shared::calculate_power2::<F, FORMAT>(num.exponent, ctlz);
let mut fp = ExtendedFloat80 {
mant: mantissa,
exp: power2,
};
shared::round::<F, _>(&mut fp, |f, s| {
shared::round_nearest_tie_even(f, s, |_, _, _| !zero);
});
fp
}