1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805
//! Optimized float serializer for radixes powers of 2.
//!
//! Note: this requires the mantissa radix and the
//! exponent base to be the same. See [hex](crate::hex) for
//! when the mantissa radix and the exponent base are different.
#![cfg(feature = "power-of-two")]
#![doc(hidden)]
use crate::options::{Options, RoundMode};
use crate::shared;
use lexical_util::algorithm::rtrim_char_count;
use lexical_util::constants::{FormattedSize, BUFFER_SIZE};
use lexical_util::format::NumberFormat;
use lexical_util::num::{as_cast, Float, Integer, UnsignedInteger};
use lexical_write_integer::write::WriteInteger;
/// Optimized float-to-string algorithm for power of 2 radixes.
///
/// This assumes the float is:
/// 1). Non-special (NaN or Infinite).
/// 2). Non-negative.
///
/// # Safety
///
/// Safe as long as `bytes` is large enough to hold the number of
/// significant digits, any (optional) leading or trailing zeros,
/// and the scientific exponent.
///
/// # Panics
///
/// Panics if exponent notation is used, and the exponent base and
/// mantissa radix are not the same in `FORMAT`.
pub unsafe fn write_float<F: Float, const FORMAT: u128>(
float: F,
bytes: &mut [u8],
options: &Options,
) -> usize
where
<F as Float>::Unsigned: WriteInteger + FormattedSize,
{
// PRECONDITIONS
// Assert no special cases remain, no negative numbers,
// and a valid format.
let format = NumberFormat::<{ FORMAT }> {};
assert!(format.is_valid());
debug_assert!(!float.is_special());
debug_assert!(float >= F::ZERO);
// Quickly calculate the number of bits we would have written.
// This simulates writing the digits, so we can calculate the
// scientific exponent. Since this number is often constant
// (except for denormal values), and doesn't describe
// the actual shift or digits we use...
//
// Note:
// Except for denormal floats, this will always
// be `F::MANTISSA_SIZE`, unless we have special
// formatting write control.
let mantissa = float.mantissa();
let radix = format.mantissa_radix();
let (mantissa, mantissa_bits) = truncate_and_round(mantissa, radix, options);
// See if we should use an exponent if the number was represented
// in scientific notation, AKA, `I.FFFF^EEE`. If the exponent is above
// a certain value, then use scientific notation. We therefore have
// to adjust the exponent by the number of mantissa bits, and shift
// by 1 (since a scientific exponent of 0 should have 1 digit ahead).
// This is a binary exp, so we need to how large our
// adjusted exp to the radix is.
//
// The scientific exponent is always this way: it's the float exponent
// (binary) + mantissa bits (binary) - 1 (for the first bit, binary),
// since 1.0 is scientific exponent 0. We need to check the scientific
// exponent relative to the number of leading or trailing 0s
// it would introduce, that is, scaled to bits/digit. The min exp must
// be less than, and the max must be above 0.
let exp = float.exponent();
let mut sci_exp = exp + mantissa_bits as i32 - 1;
// Normalize the exponent if we have an actual zero.
if mantissa == <F as Float>::Unsigned::ZERO {
sci_exp = 0;
}
write_float!(
FORMAT,
sci_exp,
options,
write_float_scientific,
write_float_positive_exponent,
write_float_negative_exponent,
generic => _,
args => mantissa, exp, sci_exp, bytes, options,
)
}
/// Write float to string in scientific notation.
///
/// # Safety
///
/// Safe as long as `bytes` is large enough to hold the number of digits
/// and the scientific notation's exponent digits.
///
/// # Preconditions
///
/// The mantissa must be truncated and rounded, prior to calling this,
/// based on the number of maximum digits. In addition, `exponent_base`
/// and `mantissa_radix` in `FORMAT` must be identical.
#[inline]
pub unsafe fn write_float_scientific<M, const FORMAT: u128>(
mantissa: M,
exp: i32,
sci_exp: i32,
bytes: &mut [u8],
options: &Options,
) -> usize
where
M: WriteInteger + FormattedSize,
{
// Just decent size bounds checks to ensure we have a lot of space.
assert!(M::FORMATTED_SIZE < BUFFER_SIZE - 2);
debug_assert!(bytes.len() >= BUFFER_SIZE);
// Config options
let format = NumberFormat::<{ FORMAT }> {};
let bits_per_digit = fast_log2(format.mantissa_radix());
let decimal_point = options.decimal_point();
// Validate our options: we don't support different exponent bases here.
debug_assert!(format.mantissa_radix() == format.exponent_base());
// Write our value, then trim trailing zeros, before we check the exact
// bounds of the digits, to avoid accidentally choosing too many digits.
let shl = calculate_shl(exp, bits_per_digit);
let value = mantissa << shl;
// SAFETY: safe since the buffer must be larger than `M::FORMATTED_SIZE`.
let digit_count = unsafe {
let count = value.write_mantissa::<M, FORMAT>(&mut index_unchecked_mut!(bytes[1..]));
index_unchecked_mut!(bytes[0] = bytes[1]);
index_unchecked_mut!(bytes[1]) = decimal_point;
let zeros = rtrim_char_count(&index_unchecked!(bytes[2..count + 1]), b'0');
count - zeros
};
// Extra 1 since we have the decimal point.
let mut cursor = digit_count + 1;
// Determine if we need to add more trailing zeros.
let exact_count = shared::min_exact_digits(digit_count, options);
// Write any trailing digits to the output.
// SAFETY: bytes since cannot be empty.
if !format.no_exponent_without_fraction() && cursor == 2 && options.trim_floats() {
// Need to trim floats from trailing zeros, and we have only a decimal.
cursor -= 1;
} else if exact_count < 2 {
// Need to have at least 1 digit, the trailing `.0`.
unsafe { index_unchecked_mut!(bytes[cursor]) = b'0' };
cursor += 1;
} else if exact_count > digit_count {
// NOTE: Neither `exact_count >= digit_count >= 2`.
// We need to write `exact_count - (cursor - 1)` digits, since
// cursor includes the decimal point.
let digits_end = exact_count + 1;
// SAFETY: this is safe as long as the buffer was large enough
// to hold `min_significant_digits + 1`.
unsafe {
slice_fill_unchecked!(index_unchecked_mut!(bytes[cursor..digits_end]), b'0');
}
cursor = digits_end;
}
// Now, write our scientific notation.
let scaled_sci_exp = scale_sci_exp(sci_exp, bits_per_digit);
// SAFETY: safe if the buffer is large enough to hold the maximum written float.
unsafe {
shared::write_exponent::<FORMAT>(bytes, &mut cursor, scaled_sci_exp, options.exponent())
};
cursor
}
/// Write negative float to string without scientific notation.
/// Has a negative exponent (shift right) and no scientific notation.
///
/// # Safety
///
/// Safe as long as `bytes` is large enough to hold the number of
/// significant digits and the leading zeros.
#[inline]
pub unsafe fn write_float_negative_exponent<M, const FORMAT: u128>(
mantissa: M,
exp: i32,
sci_exp: i32,
bytes: &mut [u8],
options: &Options,
) -> usize
where
M: WriteInteger + FormattedSize,
{
// NOTE:
// This cannot trim trailing zeros, since the exponent **must**
// be less than 0 and the value cannot be zero.
debug_assert!(mantissa != M::ZERO);
debug_assert!(sci_exp < 0);
// Just decent size bounds checks to ensure we have a lot of space.
assert!(M::FORMATTED_SIZE < BUFFER_SIZE - 2);
debug_assert!(bytes.len() >= BUFFER_SIZE);
// Config options
let format = NumberFormat::<{ FORMAT }> {};
let bits_per_digit = fast_log2(format.mantissa_radix());
let decimal_point = options.decimal_point();
// The number of 0 bits we need to pad left (reducing the
// exponent) is just the negative scientific exponent.
// We then need to calculate the number of zero digits
// from this, remembering that we're padding left,
// so for example, `1/2` in hex is represented as `0.8`.
// That means we need the `⌈ zero_bits / bits_per_digit ⌉`.
let zero_bits = sci_exp.wrapping_neg();
let zero_digits = fast_ceildiv(zero_bits, bits_per_digit) as usize;
// Write our 0 digits.
// SAFETY: safe if `bytes.len() > BUFFER_SIZE - 2`.
unsafe {
index_unchecked_mut!(bytes[0]) = b'0';
index_unchecked_mut!(bytes[1]) = decimal_point;
let digits = &mut index_unchecked_mut!(bytes[2..zero_digits + 1]);
slice_fill_unchecked!(digits, b'0');
}
let mut cursor = zero_digits + 1;
// Generate our digits after the shift. Store the number of written
// digits, so we can adjust the end-point accordingly.
let shl = calculate_shl(exp, bits_per_digit);
let value = mantissa << shl;
// SAFETY: both are safe, if the buffer is large enough to hold the significant digits.
let digit_count = unsafe {
let count = value.write_mantissa::<M, FORMAT>(&mut index_unchecked_mut!(bytes[cursor..]));
let zeros = rtrim_char_count(&index_unchecked!(bytes[cursor..cursor + count]), b'0');
count - zeros
};
cursor += digit_count;
// Determine if we need to add more trailing zeros.
let exact_count = shared::min_exact_digits(digit_count, options);
// Check if we need to write more trailing digits.
// NOTE: we cannot have a "0.1" case here, since we've previous truncated
// the significant digits, and the result is < 1.
if exact_count > digit_count {
let zeros = exact_count - digit_count;
// SAFETY: safe if the buffer is large enough to hold the significant digits.
unsafe {
let digits = &mut index_unchecked_mut!(bytes[cursor..cursor + zeros]);
slice_fill_unchecked!(digits, b'0');
}
cursor += zeros;
}
cursor
}
/// Write positive float to string without scientific notation.
/// Has a positive exponent (shift left) and no scientific notation.
///
/// # Safety
///
/// Safe as long as `bytes` is large enough to hold the number of
/// significant digits and the (optional) trailing zeros.
#[inline]
pub unsafe fn write_float_positive_exponent<M, const FORMAT: u128>(
mantissa: M,
exp: i32,
sci_exp: i32,
bytes: &mut [u8],
options: &Options,
) -> usize
where
M: WriteInteger + FormattedSize,
{
debug_assert!(sci_exp >= 0 || mantissa == M::ZERO);
// Config options
let format = NumberFormat::<{ FORMAT }> {};
let bits_per_digit = fast_log2(format.mantissa_radix());
let decimal_point = options.decimal_point();
// Write our value, then trim trailing zeros, before we check the exact
// bounds of the digits, to avoid accidentally choosing too many digits.
let shl = calculate_shl(exp, bits_per_digit);
let value = mantissa << shl;
// SAFETY: safe since the buffer must be larger than `M::FORMATTED_SIZE`.
let mut digit_count = unsafe {
let count = value.write_mantissa::<M, FORMAT>(bytes);
let zeros = rtrim_char_count(&index_unchecked!(bytes[..count]), b'0');
count - zeros
};
// Write the significant digits.
// Calculate the number of digits we can write left of the decimal point.
// If we have a scientific exp of 0, we still need
// to write 1 digit before, so it's ⌊ leading_bits / bits_per_digit ⌋ + 1.
let leading_bits = sci_exp;
let leading_digits = (leading_bits / bits_per_digit) as usize + 1;
// Now need to write our decimal point and add any additional significant digits.
let mut cursor: usize;
let mut trimmed = false;
if leading_digits >= digit_count {
// We have more leading digits than digits we wrote: can write
// any additional digits, and then just write the remaining zeros.
// SAFETY: safe if the buffer is large enough to hold the significant digits.
unsafe {
let digits = &mut index_unchecked_mut!(bytes[digit_count..leading_digits]);
slice_fill_unchecked!(digits, b'0');
}
cursor = leading_digits;
// Only write decimal point if we're not trimming floats.
if !options.trim_floats() {
// SAFETY: safe if `cursor +2 <= bytes.len()`.
unsafe { index_unchecked_mut!(bytes[cursor]) = decimal_point };
cursor += 1;
unsafe { index_unchecked_mut!(bytes[cursor]) = b'0' };
cursor += 1;
digit_count += 1;
} else {
trimmed = true;
}
} else {
// We have less leading digits than digits we wrote: find the
// decimal point index, shift all digits right by 1, then write it.
// SAFETY: safe if the buffer is large enough to hold the significant digits.
let shifted = digit_count - leading_digits;
unsafe {
let buf = &mut index_unchecked_mut!(bytes[leading_digits..digit_count + 1]);
safe_assert!(buf.len() > shifted);
for i in (0..shifted).rev() {
index_unchecked_mut!(buf[i + 1] = buf[i]);
}
index_unchecked_mut!(bytes[leading_digits]) = decimal_point;
cursor = digit_count + 1;
}
}
// Determine if we need to add more trailing zeros after a decimal point.
let exact_count = shared::min_exact_digits(digit_count, options);
// Change the number of digits written, if we need to add more or trim digits.
if !trimmed && exact_count > digit_count {
// Check if we need to write more trailing digits.
let zeros = exact_count - digit_count;
// SAFETY: safe if the buffer is large enough to hold the significant digits.
unsafe {
let digits = &mut index_unchecked_mut!(bytes[cursor..cursor + zeros]);
slice_fill_unchecked!(digits, b'0');
}
cursor += zeros;
}
cursor
}
// ALGORITHM
// ---------
// PARSER
//
// The simple, parser algorithm can be thought of like this:
// ```python
// import fractions
// import numpy as np
//
// def parse_binary(integer, fraction, exponent, radix, dtype):
// '''Parse a binary (or power of 2) integer to float'''
//
// # Parse our simple values
// iint = int(integer, radix)
// ifrac = int(fraction, radix)
// iexp = int(exponent, radix)
//
// # Calculate our actual values
// fint_num = iint * 2**iexp
// fint = fractions.Fraction(fint_num)
//
// if len(fraction) > iexp:
// ffrac_exp_num = 0
// ffrac_exp_den = len(fraction) - iexp
// else:
// ffrac_exp_num = iexp - len(fraction)
// ffrac_exp_den = 0
// ffrac_num = ifrac * 2**ffrac_exp_num
// ffrac_den = 2**ffrac_exp_den
// ffrac = fractions.Fraction(ffrac_num, ffrac_den)
//
// return dtype(fint + ffrac)
//
// parse_binary('1', '001111000000110010', '0', 2, np.float32)
// ```
//
// For binary floats, we can get a step further, assuming the value
// is in the proper range for the exponent.
//
// Please note that the real implementation is much faster,
// but for simple floats, this suffices.
//
// A another example is as follows. This closely tracks our internal logic
// for converting extended-precision floats to native floats and creates
// an exact result.
//
// ```python
// import sys
// import numpy as np
//
//
// def into_float_bits(mant, exp, finfo):
// '''Converts a mantissa and exponent (binary) into a float.'''
// # Export floating-point number.
// if mant == 0 or exp < finfo.DENORMAL_EXPONENT:
// # sub-denormal, underflow
// return 0
// elif exp >= finfo.MAX_EXPONENT:
// return INFINITY_BITS
// else:
// if exp == finfo.DENORMAL_EXPONENT and mant & finfo.HIDDEN_BIT_MASK == 0:
// exp = 0
// else:
// exp += finfo.EXPONENT_BIAS
// exp <<= finfo.MANTISSA_SIZE
// mant &= finfo.MANTISSA_MASK
// return mant | exp
//
//
// def into_float(mant, exp, finfo, is_positive):
// '''Converts a mantissa, exponent, and sign into a float.'''
//
// bits = into_float_bits(mant, exp, finfo)
// if not is_positive:
// bits |= SIGN_MASK
//
// as_bytes = bits.to_bytes(finfo.BITS // 8, sys.byteorder)
// return np.frombuffer(as_bytes, dtype=finfo.ftype)[0]
//
//
// def ctlz(integer, finfo):
// '''Count the leading zeros on an integer'''
//
// bits = [0] * finfo.BITS
// for bit in range(0, finfo.BITS):
// bits[bit] = (integer >> bit) & 1
//
// count = 0
// bit = 31
// while bit >= 0 and bits[bit] == 0:
// count += 1
// bit -= 1
//
// return count
//
//
// def normalize(mant, exp, finfo):
// '''Normalizes the float.'''
//
// if mant == 0:
// shift = 0
// else:
// shift = ctlz(mant, finfo)
//
// mant <<= shift
// exp -= shift
//
// return mant, exp
//
//
// def lower_n_mask(n):
// '''Generate a bitwise mask for the lower `n` bits.'''
// return (1 << n) - 1
//
//
// def nth_bit(n):
// '''Calculate a scalar factor of 2 above the halfway point.'''
// return 1 << n
//
//
// def lower_n_halfway(n):
// '''Calculate the halfway point for the lower `n` bits.'''
//
// if n == 0:
// return 0
// return nth_bit(n - 1)
//
//
// def internal_n_mask(bit, n):
// '''Calculate a bitwise mask with `n` 1 bits starting at the `bit` position.'''
// return lower_n_mask(bit) ^ lower_n_mask(bit - n)
//
//
// def round_nearest(mant, exp, finfo, shift):
// '''Shift right N-bytes and round to the nearest.'''
//
// mask = lower_n_mask(shift)
// halfway = lower_n_halfway(shift)
//
// truncated_bits = mant & mask;
// is_above = truncated_bits > halfway;
// is_halfway = truncated_bits == halfway;
//
// if shift == finfo.BITS:
// mant = 0
// else:
// mant >>= shift
// exp += shift
//
// return (mant, exp, is_above, is_halfway)
//
//
// def tie_even(mant, exp, is_above, is_halfway):
// '''Tie rounded floating point to even.'''
//
// is_odd = mant & 0x1 == 0x1
// if is_above or (is_odd and is_halfway):
// mant += 1
// return mant, exp
//
//
// def round_nearest_tie_even(mant, exp, finfo, shift):
// '''Shift right N-bytes and round nearest, tie-to-even.'''
//
// mant, exp, is_above, is_halfway = round_nearest(mant, exp, finfo, shift)
// return tie_even(mant, exp, is_above, is_halfway)
//
//
// def round_to_float(mant, exp, finfo):
// '''Round the float to native, using round-nearest, tie-even.'''
//
// final_exp = exp + finfo.DEFAULT_SHIFT
// if final_exp < finfo.DENORMAL_EXPONENT:
// diff = finfo.DENORMAL_EXPONENT - exp
// if diff < finfo.BITS:
// mant, exp = round_nearest_tie_even(mant, exp, finfo, diff)
// else:
// return (0, 0)
// else:
// mant, exp = round_nearest_tie_even(mant, exp, finfo, finfo.DEFAULT_SHIFT)
//
// if mant & finfo.CARRY_MASK == finfo.CARRY_MASK:
// mant >>= 1
// exp += 1
//
// return mant, exp
//
//
// def avoid_overflow(mant, exp, finfo):
// '''Avoid overflow for large values, shift left as needed.'''
//
// if exp > finfo.MAX_EXPONENT:
// diff = exp - MAX_EXPONENT
// if diff < finfo.MANTISSA_SIZE:
// bit = MANTISSA_SIZE + 1
// n = diff + 1
// mask = internal_n_mask(bit, n)
// if mant & mask == 0:
// shift = diff + 1
// mant <<= shift
// exp -= shift
// return mant, exp
//
//
// def round_to_native(mant, exp, finfo):
// '''Round float to representation for conversion.'''
//
// mant, exp = normalize(mant, exp, finfo)
// mant, exp = round_to_float(mant, exp, finfo)
// mant, exp = avoid_overflow(mant, exp, finfo)
//
// return mant, exp
//
//
// def parse_binary(integer, fraction, exponent, finfo):
// '''Parses a binary number'''
//
// is_positive = True
// if len(integer) > 0 and integer[0] == '-':
// integer = integer[1:]
// is_positive = False
// elif len(integer) > 0 and integer[0] == '+':
// integer = integer[1:]
// mant = int(integer + fraction, 2)
// exp = int(exponent, 2) - len(fraction)
// mant, exp = round_to_native(mant, exp, finfo)
// return into_float(mant, exp, finfo, is_positive)
//
//
// class f32info:
// ftype = np.float32
// itype = np.uint32
// BITS = 32
// SIGN_MASK = 0x80000000
// EXPONENT_MASK = 0x7F800000
// HIDDEN_BIT_MASK = 0x00800000
// MANTISSA_MASK = 0x007FFFFF
// INFINITY_BITS = 0x7F800000
// MANTISSA_SIZE = 23
// EXPONENT_BIAS = 127 + MANTISSA_SIZE
// DENORMAL_EXPONENT = 1 - EXPONENT_BIAS
// MAX_EXPONENT = 0xFF - EXPONENT_BIAS
// DEFAULT_SHIFT = BITS - MANTISSA_SIZE - 1
// CARRY_MASK = 0x1000000
//
// parse_binary('1', '001111000000110010', '0', f32info) -> 1.2345657
// parse_binary('1', '001111000000110001', '0', f32info) -> 1.2345619
// parse_binary('1', '001111000000110011', '0', f32info) -> 1.2345695
// parse_binary('1', '0011110000001100101', '0', f32info) -> 1.2345676
// parse_binary('1', '0011110000001100101001', '0', f32info) -> 1.2345679
// parse_binary('1100', '010110000111111', '0', f32info) -> 12.345673
// parse_binary('1100', '01011000011111100111', '0', f32info) -> 12.345673
// ```
// WRITER
// The writer is therefore quite simple:
// 1). Write the significant digits, using an itoa algorithm for the radix.
// We never need to backtrack, because we cannot have rounding error.
// 2). Calculate the scientific exponent for the value.
// This is exponent + mantissa digits.
// 3). Determine if we should use exponent notation.
// 4). Write the digits, scaled by the exponent, to the buffer.
// 5). Write the exponent character and the scientific exponent, if applicable.
//
// We can validate a written value (without an exponent)
// with the following:
//
// ```python
// def to_float(value, radix, exp_base=None, exp_radix=None):
// '''Convert a string to float.'''
//
// if exp_base is None:
// exp_base = radix
// if exp_radix is None:
// exp_radix = radix
//
// integer_digits, fraction_digits = value.split('.')
// integer = int(integer_digits, radix)
//
// split = fraction_digits.split('^')
// if len(split) == 2:
// fraction_digits, exponent_digits = split
// fraction = int(fraction_digits, radix)
// exponent = int(exponent_digits, exp_radix)
// else:
// fraction = int(fraction_digits, radix)
// exponent = 0
//
// mantissa = integer + (fraction * radix**(-len(fraction_digits)))
// return mantissa * exp_base**exponent
// ```
// MATH
// ----
/// Fast integral log2.
/// Only to be used on radixes.
#[inline]
pub fn fast_log2(x: u32) -> i32 {
debug_assert!(matches!(x, 2 | 4 | 8 | 16 | 32));
32 - 1 - (x | 1).leading_zeros() as i32
}
/// Calculate the number of significant bits in an integer.
/// This is just `1-ctlz(value)`.
#[inline(always)]
pub fn significant_bits<T: UnsignedInteger>(value: T) -> u32 {
T::BITS as u32 - value.leading_zeros()
}
/// Calculate the fast ceiling, integral division.
#[inline(always)]
pub fn fast_ceildiv(value: i32, base: i32) -> i32 {
debug_assert!(value >= 0);
(value + base - 1) / base
}
/// Get the inverse remainder to calculate the modulus.
///
/// For negative numbers, the remainder is is essentially:
/// `⌊-x / y⌋ = z, r = -x - (y * z)`
/// `⌊-21 / 4⌋ = -5, r = -21 - (4 * -5), or r = -1`
///
/// We, however, want the modulus to calculate the left-shift
/// necessary. The modulus for negative numbers is effectively:
/// `⌈-x / y⌉ = z, r = -x - (y * z)`
/// `⌈-21 / 4⌉ = -6, r = -21 - (4 * -6), or r = 3`
#[inline(always)]
pub fn inverse_remainder(remainder: i32, base: i32) -> i32 {
debug_assert!(remainder >= 0 && remainder < base);
match remainder {
0 => 0,
rem => base - rem,
}
}
/// We need to calculate the shift to align the
/// highest mantissa bit. This is based off aligning
/// the bits to the exponent, so we can get it on
/// an exponent boundary. For example, at exp = -55,
/// we get a shl of 1 from the modulus `(-55 % 4)`.
/// Since rust doesn't support the modulus operation,
/// just remainder, we can use the `inverse_remainder`
/// function to swap between the remainder of the inverse
/// to the modulus. Likewise, at `(-53 % 4) == 3`,
/// `-55 % 3 == 2`, and `-53 % 5 == 2`, all numbers
/// we expect.
///
/// For positive numbers, this is quite simple: `(48 % 5) => == 3`,
/// which is just the modulus operation as well (which for positive
/// numbers, this is identical to Rust's remainder operator).
///
/// NOTE: this can never overflow the significant digits, since
/// the mantissa must be at **least** 6-bits smaller than the mantissa
/// size (for `f16`, larger for anything else) and `bits_per_digit <= 5`.
#[inline(always)]
pub fn calculate_shl(exp: i32, bits_per_digit: i32) -> i32 {
if exp < 0 {
let shr = exp.wrapping_neg() % bits_per_digit;
inverse_remainder(shr, bits_per_digit)
} else {
exp % bits_per_digit
}
}
/// We need to scale the scientific exponent for writing.
///
/// If we have a negative exp, then when scaling that,
/// we need to consider that an exp of -1 with 5 bits
/// per base is still <0, IE, the sci exp we write has
/// to be: ⌊sci_exp / bits_per_base⌋, where ceil is
/// wrapping towards greatest magnitude.
///
/// If we have a positive exp, we just need the floor of the
/// `sci_exp / bits_per_base`, because if we had an exp of 1 with
/// 5 bits, that would behind the decimal point.
#[inline(always)]
pub fn scale_sci_exp(sci_exp: i32, bits_per_digit: i32) -> i32 {
if sci_exp < 0 {
let neg_sci_exp = sci_exp.wrapping_neg();
fast_ceildiv(neg_sci_exp, bits_per_digit).wrapping_neg()
} else {
sci_exp / bits_per_digit
}
}
// ALGORITHM
// ---------
/// Round mantissa to the nearest value, returning only the number
/// of significant digits. Also returns the number of bits of the mantissa.
#[inline]
pub fn truncate_and_round<M>(mantissa: M, radix: u32, options: &Options) -> (M, usize)
where
M: UnsignedInteger,
{
let mut mantissa_bits = significant_bits(mantissa) as usize;
let bits_per_digit = fast_log2(radix);
// Get the number of max digits, and then calculate if we need to round.
let mut max_digits = usize::MAX;
if let Some(digits) = options.max_significant_digits() {
max_digits = digits.get();
}
let max_bits = max_digits.saturating_mul(bits_per_digit as usize);
let mut shifted_mantissa = mantissa;
// Need to truncate the number of significant digits.
if max_bits < mantissa_bits {
let shr = (mantissa_bits - max_bits) as i32;
shifted_mantissa = mantissa >> shr;
// We need to round-nearest, tie-even, so we need to handle
// the truncation **here**. If the representation is above
// halfway at all, we need to round up, even if 1 bit.
if options.round_mode() == RoundMode::Round {
let mask = (M::ONE << shr) - M::ONE;
let halfway = M::ONE << (shr - 1);
let above_halfway = (mantissa & mask) > halfway;
let is_halfway = (mantissa & mask) == halfway;
let is_odd = shifted_mantissa & M::ONE == M::ONE;
// Round-up and calculate if we carry over 1-bit.
// The built-in ctlz is very fast, so use that.
// Add 1 to the mantissa bits if we carry.
let initial_bits = shifted_mantissa.leading_zeros();
shifted_mantissa += as_cast((above_halfway || (is_odd & is_halfway)) as u32);
let final_bits = shifted_mantissa.leading_zeros();
mantissa_bits += (final_bits - initial_bits) as usize;
}
}
(shifted_mantissa, mantissa_bits)
}