1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
use std::collections::HashMap;

use std::hash::Hash;

use crate::algo::{BoundedMeasure, NegativeCycle};
use crate::visit::{EdgeRef, IntoEdgeReferences, IntoNodeIdentifiers, NodeCompactIndexable};

#[allow(clippy::type_complexity, clippy::needless_range_loop)]
/// \[Generic\] [Floyd–Warshall algorithm](https://en.wikipedia.org/wiki/Floyd%E2%80%93Warshall_algorithm) is an algorithm for all pairs shortest path problem
///
/// Compute shortest paths in a weighted graph with positive or negative edge weights (but with no negative cycles)
///
/// # Arguments
/// * `graph`: graph with no negative cycle
/// * `edge_cost`: closure that returns cost of a particular edge
///
/// # Returns
/// * `Ok`: (if graph contains no negative cycle) a hashmap containing all pairs shortest paths
/// * `Err`: if graph contains negative cycle.
///
/// # Examples
/// ```rust
/// use petgraph::{prelude::*, Graph, Directed};
/// use petgraph::algo::floyd_warshall;
/// use std::collections::HashMap;
///
/// let mut graph: Graph<(), (), Directed> = Graph::new();
/// let a = graph.add_node(());
/// let b = graph.add_node(());
/// let c = graph.add_node(());
/// let d = graph.add_node(());
///
/// graph.extend_with_edges(&[
///    (a, b),
///    (a, c),
///    (a, d),
///    (b, c),
///    (b, d),
///    (c, d)
/// ]);
///
/// let weight_map: HashMap<(NodeIndex, NodeIndex), i32> = [
///    ((a, a), 0), ((a, b), 1), ((a, c), 4), ((a, d), 10),
///    ((b, b), 0), ((b, c), 2), ((b, d), 2),
///    ((c, c), 0), ((c, d), 2)
/// ].iter().cloned().collect();
/// //     ----- b --------
/// //    |      ^         | 2
/// //    |    1 |    4    v
/// //  2 |      a ------> c
/// //    |   10 |         | 2
/// //    |      v         v
/// //     --->  d <-------
///
/// let inf = std::i32::MAX;
/// let expected_res: HashMap<(NodeIndex, NodeIndex), i32> = [
///    ((a, a), 0), ((a, b), 1), ((a, c), 3), ((a, d), 3),
///    ((b, a), inf), ((b, b), 0), ((b, c), 2), ((b, d), 2),
///    ((c, a), inf), ((c, b), inf), ((c, c), 0), ((c, d), 2),
///    ((d, a), inf), ((d, b), inf), ((d, c), inf), ((d, d), 0),
/// ].iter().cloned().collect();
///
///
/// let res = floyd_warshall(&graph, |edge| {
///     if let Some(weight) = weight_map.get(&(edge.source(), edge.target())) {
///         *weight
///     } else {
///         inf
///     }
/// }).unwrap();
///
/// let nodes = [a, b, c, d];
/// for node1 in &nodes {
///     for node2 in &nodes {
///         assert_eq!(res.get(&(*node1, *node2)).unwrap(), expected_res.get(&(*node1, *node2)).unwrap());
///     }
/// }
/// ```
pub fn floyd_warshall<G, F, K>(
    graph: G,
    mut edge_cost: F,
) -> Result<HashMap<(G::NodeId, G::NodeId), K>, NegativeCycle>
where
    G: NodeCompactIndexable + IntoEdgeReferences + IntoNodeIdentifiers,
    G::NodeId: Eq + Hash,
    F: FnMut(G::EdgeRef) -> K,
    K: BoundedMeasure + Copy,
{
    let num_of_nodes = graph.node_count();

    // |V|x|V| matrix
    let mut dist = vec![vec![K::max(); num_of_nodes]; num_of_nodes];

    // init distances of paths with no intermediate nodes
    for edge in graph.edge_references() {
        dist[graph.to_index(edge.source())][graph.to_index(edge.target())] = edge_cost(edge);
    }

    // distance of each node to itself is 0(default value)
    for node in graph.node_identifiers() {
        dist[graph.to_index(node)][graph.to_index(node)] = K::default();
    }

    for k in 0..num_of_nodes {
        for i in 0..num_of_nodes {
            for j in 0..num_of_nodes {
                let (result, overflow) = dist[i][k].overflowing_add(dist[k][j]);
                if !overflow && dist[i][j] > result {
                    dist[i][j] = result;
                }
            }
        }
    }

    // value less than 0(default value) indicates a negative cycle
    for i in 0..num_of_nodes {
        if dist[i][i] < K::default() {
            return Err(NegativeCycle(()));
        }
    }

    let mut distance_map: HashMap<(G::NodeId, G::NodeId), K> =
        HashMap::with_capacity(num_of_nodes * num_of_nodes);

    for i in 0..num_of_nodes {
        for j in 0..num_of_nodes {
            distance_map.insert((graph.from_index(i), graph.from_index(j)), dist[i][j]);
        }
    }

    Ok(distance_map)
}